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ABSTRACT 

 

This paper analyzes the effect of the polymer matrix non-viscoelastic behaviour in the 

mechanical behaviour of thick multilayered cylinders. The original contribution of this 

work is to provide novel approximate analytical solutions to compute the time-

dependent internal stress state throughout the pipe thickness within the framework of 

nonlinear viscoelasticity theory. The structures considered are thick, multilayered 

anisotropic infinitive long cylinders subjected to axisymmetric mechanical loading. 

Under such conditions there is an exact elastic solution which naturally satisfies 

equilibrium, strain-displacement, compatibility and boundary conditions for the stated 

constitutive equations and loading. Due to the continuous stress variations throughout 

the cylinder thickness, the proposed nonlinear viscoelastic solution assumes the 

averaged stress state to calculate the nonlinear elastic and viscoelastic factors in each 
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layer. Furthermore the solution is obtained assuming that the creep strains, within each 

layer, are constant through the thickness. The proposed algorithm converges to the exact 

solution when the number of layers is artificially increased. For the linear viscoelastic 

case the proposed solution proved to match the exact known solution for isotropic 

viscoelastic materials. Finally several invented cases are run to illustrate the importance 

of the viscoelasticity phenomenon on the internal stress field throughout thick laminated 

cylinders. 

 

KEYWORDS: Polymer–matrix composites (PMCs); Creep; Elasticity; Analytical 

modelling; Durability. 

 

 

INTRODUCTION 

 

The hollow cylinders or cylinders are very common structural elements, used in many 

applications including trusses, hoses, piping systems and drive shafts. The effort to 

improve oil production riser performance lead to the possible use of risers made of 

polymer matrix composites to bring the oil to surface platforms in the offshore 

exploration at waster depth of 2 km or more. Consequently the increasing use of 

polymer matrix composites in civil engineering applications has renewed interest in 

problems of stress analysis of cylindrical laminated composite structures. 

Many analytical works about stress analysis of composite cylindrical shells have been 

done during the past years. This is related with the increase use of composite shells in 

many applications, such as civil engineering structures and aeronautical industry. The 
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static behaviour of thin shell panels has been investigated by using two-dimensional 

shell theories based on the Love-Kirchhoff hypotheses. Chandrashekhara and Kumar [1] 

presented and assessed these shell theories. The laminated shell theories provide an 

accurate solution for thin-walled cylinders but for thick-walled cylinders elasticity 

solutions are required for an accurate determination of the three-dimensional stress 

states.  

The nonlinear viscoelastic analysis of thick laminated composites, using the Schapery 

nonlinear visceolastic constitutive equations [2], has been preformed, essentially, using 

finite elements (FE) formulations whether using a ply-by-ply classical approach [3] or 

using a more sophisticated approach based on multi-scale approach [4] [5]. 

The laminated cylinder is one of a very few structural cases for which an exact elasticity 

solution is available. The analytical solution for multilayered cylinders is described in 

detail by Herakovich [6]. This is based on the early works of Lekhnitskii [7] and Pagano 

[8] among others. Based on this elastic solution a novel nonlinear viscoelastic analytical 

approximate solution was developed, using the Schapery [2] non-linear viscoelastic 

constitutive equations, to compute the stress state of nonlinear viscoelastic polymer 

matrix fiber reinforced laminated thick cylinders. The present solution considers that the 

material is linear elastic in the fiber direction and nonlinear elastic-viscoelastic in 

transverse and shear directions to the fibre. It is also assumed that the material is 

transversely isotropic. Since the stress state changes continuously throughout each layer 

thickness, the averaged stress state is used when computing the nonlinear elastic and 

viscoelastic factors for each layer. Furthermore the solution is obtained assuming that 

the creep strains, within each layer, are constant through the thickness. 
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The present analytical approximate solution converges to the exact solution when the 

number of layers is artificially increased. The proposed approximated solution matches 

the exact known solution for the pressurization of a compressible linear viscoelastic 

isotropic cylinder constrained by an elastic case.  

Finally several invented cases are run to simulate the mechanical behaviour of a 

nonlinear viscoelastic T300/5208 [9] composite cylinder under internal pressure, 

external pressure and axial force. These cases are used to demonstrate the importance of 

the viscoelasticity effect over the time-dependent internal stress field evolution 

throughout thick laminated cylinders. 

 

 

APPROXIMATE NON-LINEAR VISCOELASTIC SOLUTION 

 

Few composite structural configurations have an exact elasticity solution and the 

laminated circular cylinder is one of those cases. The exact elasticity solution for a long, 

circular cylinder made from a homogeneous, monoclinic layer and subjected to 

axisymmetric mechanical loading is well established [6]. In this case the mechanical 

loads are applied axisymmetrically at the ends and uniformly and axisymmetrically 

along the length. This exact elastic solution satisfies equilibrium, strain-displacement, 

compatibility and boundary conditions for the stated constitutive equations and loading. 

For a long axisymmetric cylinder under the prescribed loading, i.e. loaded uniformly 

along its length, the stresses are independent of x and θ (see Figure 1). Hence the partial 

differential equilibrium equation reduces to ordinary in r only,  
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τ τ

τ τ

−∂ + = ∂


∂ + = ∂
∂ + = ∂

. (1) 

For a hollow cylinder subjected to normal stresses on its internal surface and on external 

surface the boundary conditions are (see Figure 1) 

( ) ( )
( ) ( )
( ) ( )

0 and 0

0 0

r i i r e e

r i r e

xr i xr e

R P R P

R R

R R
θ θ

σ σ
τ τ
τ τ

= − = −
 = =
 = =

, (2) 

where iR and eR  represent the internal and the external radius, respectively and iP and 

eP  represent the internal and external pressure, respectively. 

Integration of the last two equations using the shear stress boundary conditions gives the 

zero shear stress, i.e. 

0

0
r

xr

θτ
τ

=
 =

. (3) 

The most general displacements for the problem under consideration are, 

( )
( )
( )

, axial

, tangential

radial

u u x r

v v x r

w w r

= −
 = −
 = −

. (4) 

The reduced strain-displacement equations for the axisymmetric cylinder loaded 

uniformly along its length are 
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r
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r r
u

r
v

x

θ

θ

θ

ε

ε

ε

γ

γ

γ

∂ = ∂

 =

 ∂ =
 ∂
 ∂ = −
 ∂
 ∂
 =

∂
 ∂=

∂

, (5) 

Three of the equations of compatibility are satisfied identically for the above strains. 

The remaining three are 

( )

2

2
0

1
0

1 1
0

2

x

x

x

d

r
d

r dr
d d

r
dr r dr θ

ε

ε

γ


= ∂

 =

   =   

, (6) 

Integration of the first two show that the axial strain is constant in the layer, 

0
x xε ε=  (7) 

An orthotropic viscoelastic layer the constitutive equations in principal material (1,2,3) 

coordinates (see Figure 1) are, 

11 12 131 1 1

12 22 232 2 2

13 23 333 3 3

4423 23 23

5531 31 31

6612 12 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

creep
C C C

C C C

C C C

C

C

C

σ ε ε
σ ε ε
σ ε ε
τ γ γ
τ γ γ
τ γ γ

      
      
      
      = −      

      
      
      

             








 
 
 

. (8) 
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The elastic-viscoelastic constitutive equations in the global cylindrical (x,θ,r) 

coordinated for this orthotropic layer at a fiber angle φ to the axial x-direction are given 

by 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

x x x

r r r

r r r

xr xr xr

x x x

C C C C

C C C C

C C C C

C C

C C

C C C C

θ θ θ

θ θ θ

θ θ θ

σ ε ε
σ ε ε
σ ε ε
τ γ γ
τ γ γ
τ γ γ

      
      
      
      

= −      
      
     
     

           

creep 
 
 
  
 
 

 
 
  

. (9) 

where ijC  are given by transformation equations [2]. 

 

By using the constitutive, equilibrium and strain-displacement equations the following 

axial and tangential displacements, respectively, are obtained 

( )
( )

0

0

,

,
xu x r x

v x r xr

ε
γ

 =
 =

. (10) 

For the radial displacement the following second order differential equation is obtained 

by assuming that the creep strain is constant through the layer thickness, i.e. in radial 

direction, 

( ) ( )
0

2
12 13 022

26 362 2
33 33

1 1
2

x creep
C Cdw dw C w

C C
dr r dr C r C r

ε
γ

 − +
 + − = + −
  

∑
. (11) 

where  

( )3 2 ,   1,2, ,6creep
k k kcreep

C C kε= − =∑ …  (12) 

The solution of Equation (11) is 
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( ) ( )
( )

( )
( ) ( )

12 13 26 360 0 2
1 2

33 22 33 22 33 22

2

4
creep

x

C C C C
w r A r A r r r r

C C C C C C
χ χ ε γ−

− −
= + + + +

− − −
∑

, (13) 

where 

22

33

C

C
χ = . (14) 

If the layer is isotropic or transversely isotropic then 22 33 12 13 6, , 0iC C C C C= = = and the 

Equation (11) takes the form 

2

2 2
33

1 1
creep

dw dw w

dr r dr r rC
+ − = ∑ , (15) 

which has the solution 

( ) ( )1 2
33

1
2ln 1

4
creepw r A r A r r

r C
= + + −

∑
. (16) 

Let us assume that the material is linear-elastic in fibre direction and all nonlinear and 

viscoelastic response is transverse to the fibers or in shear. If we assume that the 

material can be treated as being isotropic in the 2,3 plane, then using the Schapery [2] 

analytical approach for creep we obtain  
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( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )

2,22 2 2,23 3
1,22 22 1,23 230 0

1

2,22 3 2,23 3
2 1,22 22 1,23 230 0

3

2,44 4
23 1,44 440

31

12 1,66 55

0

t t

creep

t t

t

d g d g
g S d g S d

d d

d g d g
g S d g S d

d d

d g
g S d

d

g S

σ τ σ τ
ψ ψ τ ψ ψ τ

τ τε
σ τ σ τε ψ ψ τ ψ ψ τ
τ τε

σ τγ ψ ψ τ
τγ

γ ψ

′ ′∆ − + ∆ −
 
  ′ ′∆ − + ∆ − 
 

= 
′∆ − 

 
 
  ∆ − 

∫ ∫

∫ ∫

∫

( ) ( )( )

( ) ( )( )

2,66 5

0

2,66 6
1,66 660

t

t

d g
d

d

d g
g S d

d

σ τ
ψ τ

τ
σ τ

ψ ψ τ
τ

 
 
 
 
 
 
 
 
 
 
 
 

′ 
 
 
 ′∆ −
  

∫

∫
. (17) 

where 

0 0
, ,

     ,     
t

mn mn

d d

a a

τ

σ σ

τ τψ ψ
′ ′′= =∫ ∫  (18) 

where the nonlinear parameters 1, 2, ,, ,mn mn mng g aσ are stress dependent (of some stress 

invariant). Due the restriction imposed on the creep strain, i.e. constancy in radial 

direction, the creep strains are calculated using the averaged stress state in the layer. 

If the kernels in Equation (17) are represented by a Prony series as 

( ) ( ),

,
1

1 i mn

N
t

mn i mn
i

S t S e λ−

=

∆ = −∑  (19) 

and the Poisson coefficients 12ν  and 23ν  are assumed constant, the creep strains at each 

instant t, after integration, can be described by the following equations 
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( ) ( )

( ) ( )

1,22 ,22 2,22 ,22 2 23 ,22 2,22 ,22 3
1 1

1

1,22 ,22 2,22 ,22 3 23 ,22 2,22 ,22 22
1 1

3

1,22 ,22 2,22 ,22 423

31

12

0

, , , , , ,

, , , , , ,

, ,

N N

i i
i icreep

N N

i i
i i

i

g g a t g a t

g g a t g a t

g g a

σ σ

σ σ

σ

ε σ ν ε σ
ε

ε σ ν ε σε
ε

ε σγ
γ
γ

= =

= =

 − 
 

 
   −    

 
= 

 
 
 
  

∑ ∑

∑ ∑

( ) ( )

( )

( )

23
1

1,66 ,66 2,66 ,66 5
1

1,66 ,66 2,66 ,66 6
1

, 2 2

, , ,

, , ,

N

i

N

i
i

N

i
i

t

g g a t

g g a t

σ

σ

ν

ε σ

ε σ

=

=

=

 
 
 
 
 
 
 
 
   +  

  
  
  

  
  
     

∑

∑

∑

. (20) 

where the internal strains ,i mnε  are obtained using the following recursive formula (see 

appendix I) 

( )

( )

,

,

,

,

, 2, , 1 1 , 2, 1

, 2, ,

, , , 1

, , ,

i mn

mn

i mn

mn

t
a

i mn mn mn j j i mn mn j

t
a

i mn mn mn j j

g a t S g e

e g a t

σ

σ

λ

σ

λ

σ

ε σ σ

ε σ

− ∆

+ + +

− ∆

 
 = −
 
 

+

 (21) 

The restriction introduced by considering the creep strains constant in radial direction 

allows the analytical solution of axial displacements. Still this approximation can be 

used in moderately thick layers as it will be shown in the next section. Furthermore the 

solution converges to the exact solution when the number of layers is artificially 

increased. 

The filament wound structures are assumed to have a wind angle of φ. In a multi-

layered cylinder, each layer may have each own wind angle. In the present study are 

considered cylindrical shells made of M orthotropic plies with different wind angles. 
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The solution for a laminated, multilayered cylinder proceeds directly from the solution 

for a single-layer. The requirements are the stress and strain continuity at the layer 

interfaces. 

In this case there are 4M unknowns ( 0 0
1 2, , ,x A Aε γ ) for each layer. However due to the 

continuity of displacements between layers one must have 0 0 and xε γ  constants 

throughout the cylinder thickness. Therefore the number of unknowns reduces to 2M+2. 

The corresponding equations are 2(M-1) continuity equations for radial displacements 

and stresses, 

( ) ( ) ( ) ( )11   and    at interfaces 1, , 1p pp p
r rw w p Mσ σ ++= = = −… , (22) 

two boundary surface conditions, 

( ) ( )  and  r e e r i iR P R Pσ σ= − = − , (23) 

and two equilibrium equations, axial force 

2
in

out

R

xR
P rdrπ σ= ∫ , (24) 

and torque 

22
in

out

R

rR
T r drθπ τ= ∫ , (25) 

which gives exactly 2M+2 independent equations. 

Finally since it is assumed that the material is linear-elastic in fibre direction and all 

nonlinear response is transverse to the fibers or in shear, the elastic nonlinear 

compliance in principal material (1,2,3) coordinates is given by 
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[ ] ( )

11 12 11 12 11

12 11 22 0,22 23 22 0,22

12 11 23 22 0,22 22 0,22

23 22 0,22

66 0,66

66 0,66

0 0 0

0 0 0

0 0 0

0 0 0 2 1 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S g S g

S S g S g
S

S g

S g

S g

ν ν
ν ν
ν ν

ν

− − 
 − − 
 − −

=  + 
 
 
  

,

 (26) 

where 0,22 0,66,g g  are the elastic the nonlinear parameters that are stress dependent (of 

some stress invariant). The respective stiffness matrix is immediately obtained by 

matrix inversion. This algorithm was programmed into a FORTRAN computer code 

named as RESFLU. 

 

 

EXACT ANALYTICAL SOLUTION FOR A LINEAR VISCOELASTIC 

CYLINDER 

 

Christensen [10] presented an exact solution for the pressurization of a compressible 

linear viscoelastic cylinder constrained by an elastic case, considering sufficient long 

cylinders such that plane strain conditions can be assumed. The solution also assumes 

that the Poisson coefficient ν  is constant. Using the Prony series to represent the shear 

viscoelastic relaxation, 

( ) 0
1

i

N t

i
i

G t G G e τ−

=

= +∑  (27) 

The s multiplied Laplace transform is given by 
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( ) ( )

( )
( )
( )1

1

N

i
i

A s A s
sG s

B s
s τ −

=

= =
+∏

 (28) 

The solution, after Laplace transform inversion, gives 

( )
( ) ( ) ( )

( ) ( )

2 2

1

,
lim

i

i

a t
N i e i

r i
i i

s a

C a R r D a e
r t P

F s s a
σ

−

=
→

 −
 =

 − 
∑  (29) 

( )
( ) ( ) ( )

( ) ( )

2 2

1

,
lim

i

i

a t
N i e i

i
i i

s a

C a R r D a e
r t P

F s s a
θσ

−

=
→

 +
 =

 − 
∑  (30) 

( ) ( )
( ) ( )1

2
,

lim

i

i

a tN
i

x i
i i

s a

C a e
r t P

F s s a

ν
σ

−

=
→

=
 − 

∑  (31) 

where 

( ) ( ) ( )C s K B s A s= − ⋅ +  (32) 

( ) ( ) ( ) ( )1 2D s K B s A sν= − ⋅ +  (33) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( )( ) ( )

2 2

1 2

1 2e i

N

F s s K B s A s R R K B s A s

s a s a s a

ν

κ

 = ⋅ − + − ⋅ + 

= − − −⋯

 (34) 

where κ  is a constant and ai are the roots of ( )F s  and the integer N the number of 

terms of the representation given by (27) and 

( )22 1
c

e c

E h
K

R ν
=

−
, (35) 

where cE  and cν  are the elastic modulus and Poisson coefficient of the steel case, 

respectively, and h  is the case thickness. 

www.parsethylene.com 
www.parsethylene-kish.com

Tel : (+9821) 88 20 20 60  
info@parsethylene-kish.com

www.p
ar

se
th

yle
ne

-k
ish

.c
om



15 

In order to verify the present algorithm an example was run to simulate an internal 

pressurized (100MPa) viscoelastic cylinder (polymer) with an internal radius (Ri) of 

600mm and an external radius of 798mm constrained by an elastic case (steel) 2mm 

thick, i.e. the composite cylinder has an external radius (Re) of 800mm. The cylinder is 

considered sufficient long such that plain strain conditions can be assumed. The 

properties considered for the steel case were 205MPacE =  and 0.3cν = . The polymer 

has a Poisson coefficient 0.3ν =  and the shear relaxation modulus data is given in 

Table I. 

The equivalent shear creep compliance, given by equation 36, data used in RESFLU is 

given in Table II. In the present algorithm the plane strain solution corresponds to 

impose an axial strain restriction. The results of RESFLU follow quite closed 

Christensen [10] solution as depicted in figures 2 to 4. 

( ) ( )12 0
1

1 i

N
t

i
i

S t S S e λ−

=

= + −∑ . (36) 

The results are in an excellent agreement with exact linear viscoelastic solution. 

 

 

NONLINEAR VISCOELASTIC CYLINDERS 

 

The simulations which follow are based on the present algorithm, RESFLU. The cases 

presented are invented without any experimental results, just for illustrative purposes. It 

is simulated the mechanical behaviour of a composite cylinder under internal pressure, 

external pressure and axial force. For this purpose it is considered a carbon fibre 

reinforced laminated T300/5208 [9] cylinder with the staking sequences of [45/-45/-
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45/45] and [54/-54/-54/54]. The material properties, based on the results published by 

Tuttle and Brinson (1986) are described in Tables III-V. The cylinder with closed ends 

has an inner radius Ri=200mm and a inner radius to thickness ratio of Ri /h of 100, 10, 5 

and 2. 

The octahedral shear stress in the matrix, accordingly with Lou and Schapery [11] 

stress, is given by 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

1 2 1 3 2 3 23 31 12

1
6 6 6

3
m m m m m m m m m

octτ σ σ σ σ σ σ τ τ τ= − + − + − + + + ,

 (37) 

where 

1
12 1

11 11
2 2

3 3

2323

31
31

12
12

0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

m
m m

m
m

m

m

m

m

E E

E E
σ ν ν σ
σ σ
σ σ

ττ
ττ
ττ

   −    
   
   
    =    
   
   
           

. 

Nonlinearity arises also as a consequence of the deformations, provoking internal 

volume change as well as the angles of layers. The radius 0
jr  in the unloaded state can 

be found to vary in function of the respective hoop strain as 

( )0 1j jr r θε= + . (38) 

The angle φ  of each layer change in function of the respective averaged axial and hoop 

strain in the same manner used by Dillard [12] for the laminated composites, 

( )0
0

1
tg tg

1 tgx x

θ

θ

ε
φ φ

ε γ φ
+

=
+ +

. (39) 
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where 0φ  represents the layer angle in the unloaded state and , ,x xθ θε ε γ  represent the 

axial, tangential and shear strains. 

In the present case it was also assumed that the viscoelastic behaviour under 

compression is symmetrical of the tensile viscoelastic behaviour which may be not the 

case in real material systems. 

The loading conditions used in this study are described briefly as follows. 

Internal pressure 

The internal pressure was chosen, considering the thin cylinder theory, to result into a 

hoop stress of 100MPa as depicted in figure 5,  

( ) ( ) ( ) ( )
2 2

2 2

100MPa,

50MPa
2 2 2

i
i

e i

i i i
x i i i

e i e i e ie i

R
p

R R

R R R
p p p

R R R R R RR R

θσ

πσ
π

= =
−

= = ≈ =
− + −−

. (40) 

 

External pressure 

The external pressure was chosen, considering the thin cylinder theory, to result into a 

hoop stress of 100MPa as depicted in figure 6,  

( ) ( ) ( ) ( )
2 2

2 2

100MPa,

50MPa
2 2 2

e
e

e i

e e e
x e e e

e i e i e ie i

R
p

R R

R R R
p p p

R R R R R RR R

θσ

πσ
π

= = −
−

= = ≈ = −
− + −−

. (41) 

 

Axial loading 

The axial load was chosen, considering the thin cylinder theory, to result into an axial 

compressive stress of 100MPa as depicted in figure 7, 
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( )2 2
100MPax

x

e i

F

R R
σ

π
= = −

−
. (42) 

 

 

RESULTS AND DISCUSSION 

 

The reference creep strain values for thin cylinders were obtained from the algorithm 

LAMLFU [13], which extends the classical laminate theory to include the non-linear 

Schapery viscoelastic model. For each loading case follows the presentation and 

discussion of the results. 

 

Internal pressure 

For this load case two different staking sequences were simulated [45/-45/-45/45] and 

[54/-54/-54/54]. The purpose was to illustrate the staking influence on the creep 

evolution. The first case clearly shows a strong dependence on the viscoelastic matrix 

exhibiting high creep extensions for all inner radius to thickness ratios Ri/h considered, 

as depicted in figure 8. However the second staking sequence shows little creep 

extensions except for the thicker case which exhibits a high compressive axial creep 

deformation, as depicted in figure 9. The hoop and axial stresses also show large 

changes for the thicker cases, after 105min, as depicted in figures 10 and 11. This 

represents an increase of 38% for the hoop stress and 47% for the axial stress in the 

inner side of the cylinder with Ri/h=2. In the case of cylinder with Ri/h=5 the increase is 

just 4% for both stresses in the inner side. 
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External pressure 

In this case the [54/-54/-54/54] staking sequence shows also a week dependence on the 

viscoelastic matrix, as depicted in figure 12. However the strain deformation depends 

strongly on the cylinder thickness. Furthermore the cylinder shows small time-

dependent stress changes, as depicted in figures 13 and 14, due to the viscoelastic effect, 

when compared against the internal pressure case. 

 

Axial loading  

This last case exhibits an external axial and hoop strains strongly affected by 

viscoelastic nature of the matrix, with no significant thickness influence, as depicted in 

figure 15. However the stresses variations due to the viscoelastic effect are significantly 

larger than in the internal pressure case, as shown throughout figures 16-21. The 

increase, after 105 min, of the axial stress in the inner side of the cylinder was more than 

200% for the Ri/h=2 and Ri/h=5 cylinders. The maximum shear stress also presents an 

increase of more than 100% in the outer side of the cylinders for the same inner radius 

to thickness ratios. Furthermore the maximum radial stress increases more than 200%.  

 

The computed reference strains, given by LAMFLU, match the computed strains by 

RESFLU for the Ri/h=100 cylinders which is a good indication on the quality of the 

RESFLU results for the nonlinear viscoelastic calculations. All simulated cases show 

the need to compute the time-dependent stress state throughout the thickness, especially 

in the presence of thick walled cylinders. The external pressure loading case displayed 

the least time-dependent stress variation. By opposite the axial compressive loading 

case has shown the most critical stress variation. Generally the internal stress 
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redistributions due to the viscoelastic nature of the matrix lead, after a certain amount of 

time, to stress states which in some cases are far from the initial computed (elastic) 

stress state. This phenomenon, for sure, can lead to premature failures. Therefore careful 

time-dependent stress analyze should be performed in the presence of viscoelastic thick 

walled cylinders. The present approach is a first step towards the long-term failure 

prediction of nonlinear viscoelastic multilayered composite cylinders under constant or 

cyclic loading. 

 

 

CONCLUSIONS 

This work presents a novel analytical approach to calculate the time-dependent stress-

strain state in nonlinear viscoelastic multilayered composite cylinders. The solution is 

possible when some restrictions in each ply are imposed, i.e. the creep strains are 

assumed constant and the nonlinear elastic and viscoelastic factors are computed using 

the averaged stress state in each layer. The exact solution can be found when the 

number of layers, artificially introduced, increases to infinity. The proposed solution, 

obtained using few layers, matched the exact known solution for the pressurization of a 

compressible linear viscoelastic cylinder constrained by an elastic case.  

Invented cases are run to simulate the mechanical behaviour of a T300/5208 nonlinear 

viscoelastic multilayered composite cylinder under internal pressure, external pressure 

and axial force. These cases are used to demonstrate the importance of the 

viscoelasticity effect over the time-dependent internal stress field evolution throughout 

thick laminated cylinders. In some cases, given enough time, the stress states evolve 
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into stress states which, in some cases, are far from the initial computed (elastic) stress 

state. 

 

 

ACKNOWLEDGMENTS 

 
The research hereby presented was supported by Fundação para a Ciência e Tecnologia 

(Ministério da Ciência e do Ensino Superior) through project POCTI/EME/44644/2002. 

 

 

APPENDIX I 

In order to eliminate the Volterra-type integrals, the transverse and shear compliance are 

expressed using Prony series, as Gramoll [14] and Czyz [15] have already discussed. 

Then the creep strain can be described by 

( ) ( )1, ,
1

N
creep

mn mn i mn
i

t g tε ε
=

= ∑  (I.1) 

where 

( ) ( )( ) ( )
, 2,

, , 0
1 i mn

t mn
i mn i mn

dg
t S e d

d
λ ψ ψ σ τ

ε τ
τ

′− −= −∫  (I.2) 

The previous equation can be integrated 

( ) ( ) ( ) ( ) ( ), , ,
, , 0

ji mn j i mn
tv t v i mn

i mn j i mn j

dg
t g e e d

d
λ λ τ σ

ε σ τ
τ

−= − ∫
ɶ

ɶ  (I.3) 

with  

( ), , 2,gi mn i mn mng Sσ σ=ɶ   
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and  

( )
'

0
,

t

mn

d
v t

aσ

τ= ∫  

Let us now calculate ( ), 1i mn jtε +  for the time tj+1 based on the knowledge of the value of 

( ),i mn jtε  at the time tj. 

( ) ( ) ( ) ( ) ( )

( ) ( )

, 1 ,

1 ,

,
, 1 , 1 0

,                      

ji mn j i mn

j i mn

j

tv t v i mn
i mn j i mn j

t v i mn

t

dg
t g e e d

d

dg
e d

d

λ λ τ

λ τ

σ
ε σ τ

τ

σ
τ

τ

+

+

−
+ +


= − +







∫

∫

ɶ
ɶ

ɶ
 (I.4) 

Therefore 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

, 1

1, 1 ,

, 1 , 1 ,

,                      

i mn j j

ji mn j i mn

j

v t v t

i mn j i mn j i mn j i j

tv t v i mn

t

t g e g t

dg
e e d

d

λ

λ λ τ

ε σ σ ε

σ
τ

τ

+

++

 − − 
+ +

−

 = − − 

− ∫

ɶ ɶ

ɶ
 (I.5) 

Noting the following relationships 

( ) ( ) ( ) ( )1
'

,
, 1 , 1 1

, , 1

 =     ,   
jt i mn

i mn j i mn j j j
mn mn j

d
v t v t t t

a aτ
σ σ

λτλ τ λ τ τ
σ

+

+ + +
+

−
 − − = − − ≤ ≤  ∫  (I.6) 

and 

( ) ( ) ( ) ( )1
'

,
, 1 , 1

, , 1

 =  
j

j

t i mn
i mn j j i mn j jt

mn mn j

d
v t v t t t

a aσ σ

λτλ λ
σ

+

+ +
+

−
 − − = − −  ∫  (I.7) 

Finally the equation (I.5) can be integrated 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 , 1, 1 ,

,
, 1

, ,

 

, 1                                             

j j i mn ji mn j i mn

j j

i mn
mn j

t t v t vv t v i mn i mn

t t

t

a

i mn j i j

dg dg
e e d e d

d d

e g gσ

λ τλ λ τ

λ
σ

σ σ
τ τ

τ τ

σ σ

+ + ++

+

 − −−  

∆−

+

=

 = − 

∫ ∫
ɶ ɶ

ɶ ɶ

 (I.8) 

with 1j jt t t+∆ = −  

Replacing this result (I.8) into equation (I.5) the recursive formula is obtained  
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( ) ( ) ( ) ( ) ( )
,

, 1

 

, 1 , 1 , 1

i mn
mn j

t

a

i mn j i mn j i mn j i jt g e g tσ
λ

σε σ σ ε+

∆−

+ + + = − − ɶ ɶ  (I.9) 
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Figure Captions 

 

Figure 1: Laminated composite cylinder (after [2]). 

Figure 2: Time-dependent axial stress in the viscoelastic material. 

Figure 3: Hoop stress in the viscoelastic material after 106 min. 

Figure 4: Radial stress in the viscoelastic material after 106 min. 

Figure 5: Scheme of load distribution in a thin cylinder under internal pressure. 

Figure 6: Scheme of load distribution in a thin cylinder under external pressure. 

Figure 7: Scheme of load distribution in a thin cylinder under axial loading. 

Figure 8: External axial and hoop strain time-dependent evolution for cylinders [45/-
45/-45/45] under internal pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 

Figure 9: External axial and hoop strain time-dependent evolution for cylinders [54/-
54/-54/54] under internal pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 

Figure 10: Axial and hoop stress distribution immediately after loading (t=0) for 
cylinders [54/-54/-54/54] under internal pressure with inner radius to thickness ratios Ri 
/h of 100, 10, 5 and 2. 

Figure 11: Axial and hoop stress distribution the instant t=105 min for cylinders [54/-
54/-54/54] under internal pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 

Figure 12: External axial and hoop strain time-dependent evolution for cylinders [54/-
54/-54/54] under external pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 

Figure 13: Axial and hoop stress distribution immediately after loading (t=0) for 
cylinders [54/-54/-54/54] under external pressure with inner radius to thickness ratios Ri 
/h of 100, 10, 5 and 2. 

Figure 14: Axial and hoop stress distribution at the instant t=105 min for cylinders [54/-
54/-54/54] under external pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 

Figure 15: External axial and hoop strain time-dependent evolution for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 
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Figure 16: Axial and hoop stress distribution immediately after loading (t=0) for 
cylinders [54/-54/-54/54] under axial compressive load with inner radius to thickness 
ratios Ri /h of 100, 10, 5 and 2. 

Figure 17: Axial and hoop stress distribution at the instant t=105 min for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 

Figure 18: Radial stress distribution immediately after loading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 

Figure 19: Radial stress distribution at the instant t=105 min for cylinders [54/-54/-
54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 100, 
10, 5 and 2. 

Figure 20: Shear stress distribution immediately after loading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 

Figure 21: Shear stress distribution at the instant t=105 min for cylinders [54/-54/-54/54] 
under axial compressive load with inner radius to thickness ratios Ri /h of 100, 10, 5 and 
2. 
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List of Tables 

Table I. Shear relaxation modulus data (equation 26). 

i Gi τi 
 MPa min 
0 462  
1 32 1 
2 72 10 
3 165 95 
4 590 822 
5 748 7224 
6 703 65632 
7 690 370698 
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Table II. Shear creep compliance used in RESFLU. 

i Si λi 
0 2.89E-01   
1 1.42E+00 1.00E-06 
2 2.31E-01 1.00E-05 
3 1.38E-01 1.00E-04 
4 6.49E-02 1.00E-03 
5 1.46E-02 1.00E-02 
6 6.20E-03 1.00E-01 
7 2.71E-03 1.00E+00 
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Table III. Elastic properties of T300/5208 

E1 E2 G12 ν12 ν23 
 GPa  GPa  GPa     

132 9.434 6.41 0.273 0.273 
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Table IV. Transverse and shear creep compliance of T300/5208 

i S22,i λ22,i S66,i λ66,i 
  GPa-1 min-1 GPa-1 min-1 

0 0.10600   0.15601   
1 0.00104 1 0.00235 1 

2 0.00119 10-1 0.00232 10-1 

3 0.00281 10-2 0.00506 10-2 

4 0.00499 10-3 0.00823 10-3 

5 0.01063 10-4 0.01567 10-4 

6 0.01779 10-5 0.02434 10-5 

7 0.05460 10-6 0.06500 10-6 
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Table V. Transverse and shear creep compliance of T300/5208 

Function* 
Coefficient 

α β (MPa) 

g0,22 0.00000   

g1,22 0.08750 6.43 

g2,22 0.00000  

aσ,22 0.24700 6.43 

g0,66 0.00513 12.05 

g1,66 0.00979 7.23 

g2,66 0.12400 7.23 

aσ,66 0.03400 14.50 

* , 1.0i jj octg α τ β= + − , ( ), expjj octaσ α τ β= − −   
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List of Figures 
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Figure 1: Laminated composite cylinder (after [2]). 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1E-01 1E+01 1E+03 1E+05 1E+07

Time (min)

A
xi

al
 S

tr
es

s 
(M

P
a)

Christensen (1982)

RESFLU

 
Figure 2: Time-dependent axial stress in the viscoelastic material. 
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Figure 3: Hoop stress in the viscoelastic material after 106 min. 
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Figure 4: Radial stress in the viscoelastic material after 106 min. 
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Figure 5: Scheme of load distribution in a thin cylinder under internal pressure. 
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Figure 6: Scheme of load distribution in a thin cylinder under external pressure. 
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Figure 7: Scheme of load distribution in a thin cylinder under axial loading. 
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Figure 8: External axial and hoop strain time-dependent evolution for cylinders [45/-
45/-45/45] under internal pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 
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Figure 9: External axial and hoop strain time-dependent evolution for cylinders [54/-
54/-54/54] under internal pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 
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Figure 10: Axial and hoop stress distribution immediately after loading (t=0) for 
cylinders [54/-54/-54/54] under internal pressure with inner radius to thickness ratios 
Ri/h of 100, 10, 5 and 2. 

www.parsethylene.com 
www.parsethylene-kish.com

Tel : (+9821) 88 20 20 60  
info@parsethylene-kish.com

www.p
ar

se
th

yle
ne

-k
ish

.c
om



37 

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

(r-Ri)/(Re-Ri)

S
tr

es
s 

(M
P

a)

Ri/h=100
Ri/h=10
Ri/h=5
Ri/h=2

T300/5208 [54/-54/-54/54]

σθ

σx

t=105 min

 
Figure 11: Axial and hoop stress distribution the instant t=105 min for cylinders [54/-
54/-54/54] under internal pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 

-0.0020

-0.0018

-0.0016

-0.0014

-0.0012

-0.0010

-0.0008

-0.0006

-0.0004

-0.0002

0.0000

0.01 1 100 10000 1000000

Time (min)

S
tr

ai
n

Thin
Ri/h=100
Ri/h=10
Ri/h=5
Ri/h=2

T300/5208 [54/-54/-54/54]

εθ

εx

 
Figure 12: External axial and hoop strain time-dependent evolution for cylinders [54/-
54/-54/54] under external pressure with inner radius to thickness ratios Ri /h of 100, 10, 
5 and 2. 
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Figure 13: Axial and hoop stress distribution immediately after loading (t=0) for 
cylinders [54/-54/-54/54] under external pressure with inner radius to thickness ratios 
Ri/h of 100, 10, 5 and 2. 
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Figure 14: Axial and hoop stress distribution at the instant t=105 min for cylinders [54/-
54/-54/54] under external pressure with inner radius to thickness ratios Ri/h of 100, 10, 
5 and 2. 
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Figure 15: External axial and hoop strain time-dependent evolution for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 
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Figure 16: Axial and hoop stress distribution immediately after loading (t=0) for 
cylinders [54/-54/-54/54] under axial compressive load with inner radius to thickness 
ratios Ri /h of 100, 10, 5 and 2. 
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Figure 17: Axial and hoop stress distribution at the instant t=105 min for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 

-2

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

(r-Ri)/(Re-Ri)

S
tr

es
s 

(M
P

a)

Ri/h=100
Ri/h=10
Ri/h=5
Ri/h=2

T300/5208 [54/-54/-54/54]

σr

t=0 min

 
Figure 18: Radial stress distribution immediately after loading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 
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Figure 19: Radial stress distribution at the instant t=105 min for cylinders [54/-54/-
54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 100, 
10, 5 and 2. 
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Figure 20: Shear stress distribution immediately after loading (t=0) for cylinders [54/-
54/-54/54] under axial compressive load with inner radius to thickness ratios Ri /h of 
100, 10, 5 and 2. 
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Figure 21: Shear stress distribution at the instant t=105 min for cylinders [54/-54/-54/54] 
under axial compressive load with inner radius to thickness ratios Ri /h of 100, 10, 5 and 
2. 
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